
Operating Systems and Network Fundamentals

 Dr. Barry Wittman
 Not Dr. Barry Whitman
 Education:
 PhD and MS in Computer Science, Purdue University
 BS in Computer Science, Morehouse College

 Hobbies:
 Reading, writing
 Enjoying ethnic cuisine
 DJing
 Lockpicking
 Stand-up comedy

 E-mail: wittman1@otterbein.edu
 Office: Art & Communication C123
 Phone: (614) 823-2944
 Office hours: MWF 10:15 – 11:15 a.m.,

MW 3:00 – 4:00 p.m.,
F 3:00 – 5:00 p.m.,
T 10:00 – 11:15 a.m.,
TR 2:00 – 4:00 p.m.,
and by appointment

 Website:
http://faculty.otterbein.edu/wittman1/

100%

Majors

Computer
Science

 What's the purpose of this class?
 What do you want to get out of it?
 Do you want to be here?

 Michael S. Kirkpatrick
 OpenCSF: Computer Systems Fundamentals
 Available:

https://w3.cs.jmu.edu/kirkpams/OpenCSF/Books/csf/html/
 The book is free and includes interactive questions to test

your knowledge at the ends of sections

https://w3.cs.jmu.edu/kirkpams/OpenCSF/Books/csf/html/

 You are expected to read the material before class
 If you're not prepared, you might be asked to leave
 You might forfeit the education you have paid around $100

per class meeting to get!

 Deeper C expertise
 Linux system calls
 Processes
 Signals
 Interprocess communication
 Shared memory
 Threading
 Synchronization
 Network programming

For more information, visit the webpage:
http://faculty.otterbein.edu/wittman1/comp3400

 The webpage will contain:
 The most current schedule
 Notes available for download
 Reminders about exams and homework
 Syllabus (you can request a printed copy if you like)

 Detailed policies and guidelines

 27% of your grade will be three equally weighted projects
 Each will focus on a different topic:
 Function pointers and finite state machines
 Processes and intrusion detection
 Networking and CGI

 You will work on each project in two-person teams

 All projects are done in teams of two
 You may pick your partners
 But you have to have a different partner for each project!
 Use Brightspace to form teams

 Projects must be uploaded to Brightspace

https://otterbein.brightspace.com/

 Projects must be uploaded to Brightspace before the deadline
 Late projects will not be accepted
 Exception: Each person will have 3 grace days
 You can use these grace days together or separately as extensions

for your projects
 You must inform me before the deadline that you are going to use

grace days
 If two people in a team don't have the same number of grace days,

the number of days they will have available will be the maximum of
those remaining for either teammate

 Projects (and assignments) work differently than in my other
classes

 Relatively large frameworks of skeleton code will be given to
you

 Unit tests and integration tests will also be provided
 Understanding the tests will help you understand what you

need to code
 You won't have to write much code … but it will have to be

code that you understand well

 Inside the top-level project directory, type make test to run the tests
 The top-level directory will contain a tests directory with lots of important stuff:
 tests/public.c

▪ Driver for unit tests, using the Check framework for unit testing
▪ Some tests will be given, but you should add more

 tests/itests.include
▪ Configuration file that gives command-line arguments for integration testing.
▪ You can modify this file to add test cases for both good and bad command-line arguments.

 tests/expected/
▪ Directory contains text files with the expected output for integration tests.
▪ When you add test cases to itests.include, you must also create a corresponding .txt file in this

directory
▪ diff is used to check, so output must match to the character

 tests/inputs/
▪ Directory contains files that can be used as input to the projects

 tests/Makefile, tests/integration.sh, and tests/testsuite.c
▪ Drivers for the testing infrastructure that you don't need to modify

 24% of your grade will be single-week programming assignments
 These assignments are grouped:
 Assignments 1 and 2 are grouped with Project 1
 Assignments 3 and 4 are grouped with Project 2
 Assignments 5 and 6 are grouped with Project 3
 Assignments 7 and 8 are grouped together without a project

 Because the code is interrelated, you will have the same teams for
each grouping of assignments and projects

 Assignments are intended to make the projects easier
 Do the grouped assignments first before starting on the project!

 Assignments must be uploaded to Brightspace before the
deadline

 Late assignments will not be accepted
 There are no grace days for assignments

 5% of your grade will be tickets out the door
 These tickets will be based on material covered in the previous

one or two lectures
 They will be graded leniently
 They are useful for these reasons:

1. Informing me of your understanding
2. Feedback to you about your understanding
3. Easy points for you
4. Attendance

 There will be two equally weighted in-class exams totaling
30% of your final grade
 Exam 1: 02/17/2025
 Exam 2: 03/24/2025

 The final exam will be worth another 14% of your grade
 Final: 8:00 – 10:00 a.m.

4/30/2025

Week Starting Topics
OpenCSF
Chapters

Notes

1 01/13/25 Introduction 1

2 01/20/25 Kernel and System Calls 2 Assignment 1

3 01/27/25 Processes, files, and signals 2 Assignment 2

4 02/03/25 IPC 3 Project 1

5 02/10/25 Shared Memory 3 Assignment 3

6 02/17/25 Networking 4 Assignment 4

7 02/24/25 More Networking 4

8 03/03/25 Internet 5 Project 2

03/10/25 Spring Break

9 03/17/25 Threading 6 Assignment 5

10 03/24/25 Synchronization Primitives 7 Assignment 6

11 03/31/25 More on Synchronization Primitives 7

12 04/07/25 Synchronization Problems 8 Project 3

13 04/14/25 Parallel and Distributed Systems 9 Assignment 7

14 04/21/25 Review All Assignment 8

 Project 1: 9% Tentatively due 02/07/2025

 Project 2: 9% Tentatively due 03/07/2025

 Project 3: 9% Tentatively due 04/11/2025

 Assignment 1: 3% Tentatively due 01/24/2025

 Assignment 2: 3% Tentatively due 01/31/2025

 Assignment 3: 3% Tentatively due 02/14/2025

 Assignment 4: 3% Tentatively due 02/21/2025

 Assignment 5: 3% Tentatively due 03/21/2025

 Assignment 6: 3% Tentatively due 03/28/2025

 Assignment 7: 3% Tentatively due 04/17/2025

 Assignment 8: 3% Tentatively due 04/25/2025

27%
• Three projects
• Equally weighted

24%
• Eight assignments
• Equally weighted

5%
• Tickets out the door

30%
• Two equally weighted midterm exams

14%
• Final exam

A 93-100 B- 80-82 D+ 67-69

A- 90-92 C+ 77-79 D 60-66

B+ 87-89 C 73-76 F 60-62

B 83-86 C- 70-72

 You are expected to attend all classes
 You are expected to have read the material we are going to

cover before class
 Missed tickets out the door cannot be made up
 Exams must be made up before the scheduled time, for

excused absences

 I hate having a slide like this
 I ask for respect for your classmates and for me
 You are smart enough to figure out what that means
 A few specific points:
 Silence communication devices
 Don't play with your phones
 Don't use the computers in class unless specifically told to
 No food or drink in the lab

 We will be doing work on the computers together
 However, students are always tempted to surf the Internet,

etc.
 Research shows that it is nearly impossible to do two things at

the same time (e.g. watch TikTok and listen to a lecture)
 For your own good, I will enforce this by taking 1% of your

final grade every time I catch you playing on your phones or
using your computer for anything other than course exercises

 Don't cheat
 First offense:
 I will try to give you a zero for the assignment, then lower your final letter

grade for the course by one full grade
 Second offense:
 I will try to fail you for the course and try to kick you out of Otterbein

 Refer to the syllabus for the school's policy
 Ask me if you have questions or concerns
 You are not allowed to look at another student's code, except

for group members in group projects (and after the project is
turned in)

 I will use tools that automatically test code for similarity

 Artificial Intelligence (AI) is any computer system designed to perform a
cognitive or behavioral task historically believed to be one only humans can
perform. Generative AI is a term used for recent AI systems that generate
significant quantities of content such as text, images, audio, or video from a
short input prompt, usually text.

 Although generative AI tools are impressive, they must not be used to write any
code that a student is expected to turn in for this class. Generative AI tools may
be used to explain existing code or to suggest improvements for code but only
after the project or assignment in question has been turned in. Students who do
not write code themselves have missed the opportunity to gain the skills of
logical problem solving and translation to a formal programming language that
are essential for computer scientists. Submitting work that includes or is
derived from AI-generated materials shall be considered an act of academic
dishonesty.

 The University has a continuing commitment to providing access
and reasonable accommodations for students with disabilities,
including mental health diagnoses and chronic or temporary
medical conditions. Students who may need accommodations or
would like referrals to explore a potential diagnosis are urged to
contact Disability Services (DS) as soon as possible. DS will
facilitate accommodations and assist the instructor in minimizing
barriers to provide an accessible educational experience. Please
contact DS at DisabilityServices@otterbein.edu. More info can
also be found here. Your instructor is happy to discuss
accommodations privately with you as well.

mailto:DisabilityServices@otterbein.edu
http://www.otterbein.edu/ods

 In most classes, I let you make a lot of choices about style
 For example, should you have braces on the same line as the header or the next line?
 I emphasize consistency

 In this class, however, you have to use GNU style for C
 It's different from any style you've probably used before
 And ugly!

 But it has value for several reasons:
1. It's a real standard used for GNU projects, including a huge number of open-

source projects
2. You might be forced by your employer to adhere to some arbitrary standard in

the future
3. Being able to adopt a particular standard as needed is a good skill for a

professional software engineer

 There's a long-standing, quasi-religious debate over whether code should
be indented with spaces or tabs
 https://www.youtube.com/watch?v=oRva7UxGQDw

 Because of the Java IDEs we use, you're probably used to tabs
 Bad news: GNU style uses exactly two spaces for all indentation
 Good news: Your development practices don't need to change much.
 Tab (\t) is a character, but it doesn't have to be the character that pops

out when you press the tab key on your keyboard
 Most development environments allow you to specify that hitting the tab

key can produce a tab or a specific number of spaces
 You can configure gedit (or whatever IDE you're using) to output 2

spaces whenever you hit tab

https://www.youtube.com/watch?v=oRva7UxGQDw

 In GNU style, pairs of braces should be in the same column, one below the other, unlike
the Java standard of putting opening braces on the same line as the header

 Blocks like functions, selection statements, and loops should be indented with 2 spaces
 If you're indenting a single line, that's all you need to do
 However, selection statements and loops have their braces indented and the contents of those

braces indented again

if (i < 10)
{

printf ("%d\n", i);
}

else
{

printf ("Too big\n");
}

 Another peculiarity of GNU style is that the return types of
functions are written on the line before the function name,
making the function name the first thing on a line

int
main (int argc, char **argv)
{
/* Code here */
return 0;

}

 First, the test suite included with every project and assignment
will check for compliance with GNU style and complain about
every file that doesn't match

 Second, there's a magical tool called clang-format that can
actually convert your code into GNU style (or a bunch of other
styles)

 Example using clang-format to convert something called
program.c to GNU style:

> clang-format --style=gnu -i program.c

 For a more explanation and examples of the style you're
expected to use, please visit the COMP 3400 Standards page:
 http://faculty.otterbein.edu/wittman1/comp3400/standards/

 On a related note, even the best CS programs don't always
have time to help students learn all the tools they'll need to
use: editors, scripting, version control, debugging, etc.

 At MIT, some people put together a series of video and text
lectures explaining what they think are some of the most
important tools:
 https://missing.csail.mit.edu/

http://faculty.otterbein.edu/wittman1/comp3400/standards/
https://missing.csail.mit.edu/

 The word "systems" comes up in computer science all the time
 It means nothing, and it means everything

 We can think of a computer system as a collection of interacting
components

 Hardware:
 CPU
 Storage
 I/O
 RAM
 All attached via

a PCB

 Software:
 OS talking to

the hardware
 Applications

PCB

RAM

OS

A
pp

lic
at

io
n

A
pp

lic
at

io
n

A
pp

lic
at

io
n

A
pp

lic
at

io
n

Storage

Display

CPU

 Just as one computer can be thought of as a system, we can also
network computers together to form systems of systems

 There are problems communicating within a single computer
 These problems happen at a larger scale when communicating

and coordinating between many computers
 Traditional OS course focus almost exclusively on process

scheduling and memory management within a single computer
 This course focuses on the same fundamental problems but at

several levels of implementation
 Its goal is to make you a better programmer rather than an expert

on OS internals

 Systems are complex
 Thus, we make models, simplified representations of systems
 These models are often visual, taking the form of labeled boxes

with arrows
 But formal models like equations or statements of logic are common too
 If you've taken COMP 3100, you're familiar with UML, a standard visual

way to model systems in CS
 The level of abstraction means how much detail has been

removed
 A high level of abstraction means we're focusing on the essentials of the

system
 As computer scientists, we often have to turn models into code

 Course themes
 System architectures

 Read sections 1.3 and 1.4
 If you're rusty on C, read Appendix A
 Look over Assignment 1
 Due next Friday

 Form teams for Assignments 1 and 2 and Project 1
 Consider dual-booting Linux on your machine if you don't

have it already
 Another option is running Linux inside of Virtual Box

	COMP 3400
	Who am I?
	How can you reach me?
	Who are you?
	Why are we here?
	Course Overview
	Textbook
	You have to read the book
	Course focuses
	More information
	Projects
	Three projects
	Teams
	Turning in projects
	Project framework
	Running tests
	Assignments
	Assignments
	Turning in assignments
	Tickets Out the Door
	Tickets out the door
	Exams
	Exams
	Course Schedule
	Tentative schedule
	Project schedule
	Assignment schedule
	Policies
	Grading breakdown
	Grading scale
	Attendance
	R-E-S-P-E-C-T
	Computer usage
	Academic dishonesty
	AI statement
	Disability Services
	GNU Style
	GNU style
	Spaces vs. tabs
	Braces and indentation
	More on braces and indentation
	Tools to help
	More information on style
	Systems and Models
	Computer systems
	Systems of systems
	Models
	Upcoming
	Next time…
	Reminders

